OXYDATION DES ALCOOLS

EXERCICE 1:

A est un alcool de formule brute C₃H₈O.

- 1. Représenter et nommer tous les alcools qui correspondent à la formule brute donnée.
- 2. Pour lever l'ambiguïté sur A, on réalise son oxydation. On obtient un composé B qui réagit à la DNPH.
 - Quelle(s) famille(s) réagit(ssent) positivement à la DNPH ? Ce test à la DNPH sur le produit B permet-il de déterminer A ? Expliquer.
- 3. On met à réagir B avec la liqueur de Fehling. Il se forme un précipité rouge brique. Quelle fonction organique est ainsi mise en évidence ? Donner le nom et la formule semi-développée de B.
- 4. En déduire le nom de l'alcool A.

EXERCICE 2:

On dispose de 2 alcools isomères de formule C₄H₁₀O. La chaîne carbonée de ces deux alcools est linéaire. On réalise l'oxydation ménagé de ces deux alcools par une solution de permanganate de potassium en milieu acide

- 1. Quel est le groupe fonctionnel alcool?
- 2. Ecrire et nommer les deux alcools linéaires qui répondent à cette formule brute. Préciser la classe de chacun d'eux.
- 3. L'un des alcools A_1 conduit à un corps organique B_1 . L'autre alcool noté A_2 conduit à un corps organique B_2 . B_1 et B_2 réagissent positivement à la DNPH.

Quel est le groupe mis en évidence dans ce test ?

Cette expérience suffit-elle pour déterminer les formules de B₁ et B₂ ? Justifier.

- 4. Les composés B_1 et B_2 sont soumis au réactif de Fehling; seul le composé B_2 donne un précipité rouge brique ave ce test. En déduire la famille de B_1 et B_2 .
- 5. Quel est la classe des alcools A_1 et A_2 ?
- 6. Donner le nom et la formule semi-développée de A₁, A₂, B₁ et B₂.
- 7. Ecrire l'équation d'oxydoréduction de l'alcool A₁ par l'ion permanganate en milieu acide. On précisera où est l'oxydation et où est la réduction.
- 8. Même question pour l'alcool A_2 .
- 9. L'alcool primaire conduit aussi à la formation d'un autre corps noté C lors de l'oxydation ménagée. Donner le nom et la formule semi-développée de C.

Données:

$$MnO_4^{-} + 8 H^+ + 5 e^- = Mn^{2+} + 4 H_2O$$

 $R\text{-}CHO + 2 H^+ + 2 e^- = R\text{-}CH_2OH$
 $R\text{-}CO\text{-}R' + 2 H^+ + 2 e^- = R\text{-}CHOH\text{-}R'$

EXERCICE 3:

Le propan-1-ol est oxydé par les ions dichromates Cr₂O₇ ²⁻ en milieu acide en un composé A. Lorsque la liqueur de Fehling est mise en présence du composé A, il se forme un précipité rouge brique.

- 1. Quelle est la nature du précipité rouge brique ?
- 2. Ecrire l'équation de la réaction d'oxydo-réduction qui a eu lieu.

Données:

$$Cr_2O_7^{2-} + 14 H^+ + 6 e^- = Cr^{3+} + 7 H_2O$$

 $C_3H_6O + 2 H^+ + 2 e^- = C_3H_7OH$

EXERCICE 4:

On cherche à déterminer la masse molaire d'un aldéhyde. Pour cela, une masse m_1 de 4,4 de cet aldéhyde est mise en présence d'un excès de liqueur de Fehling. le précipité rouge d'oxyde de cuivre Cu_2O qui se forme est séché et pesé. On trouve une masse $m_2=14,3$ g.

- 1. Décrire le test utilisant la liqueur de Fehling.
- 2. Quelles sont les molécules qui réagissent positivement à ce test ?
- 3. Calculer la quantité de matière n_2 d'oxyde de cuivre qui se sont formées.
- 4. En déduire le nombre de moles d'aldéhyde qui ont été oxydées.
- 5. Connaissant la masse d'aldéhyde utilisé, montrer que sa masse molaire vaut 44 g.mol⁻¹.

6. Nommer l'aldéhyde qui a été oxydé.

7. Quel alcool faut il oxyder de façon ménagée pour obtenir cet aldéhyde ? Donner son nom et sa formule semi-développée.

 $Aldéhyde: C_nH_{2n}O$

Equation entre un aldéhyde et la liqueur de Fehling :
$$R-CHO + 2 Cu^{2+} + 5 HO^{-} \qquad R-CO_{2}^{--} + Cu_{2}O + 3 H_{2}O$$

EXERCICE5 SUJET D'ESSAI JUIN 2009

Cet exercice est un questionnaire à choix multiples.

Aucune justification n'est demandée.

Pour chaque situation, choisir la (ou les) bonne(s) réponse(s) en remplissant la feuille donnée en

Le candidat indiquera clairement la (ou les) lettre(s) qui correspond(ent) à ses réponses.

Une réponse fausse ou l'absence de réponse n'enlève aucun point.

Situation	Proposition A	Proposition B	Proposition C	Proposition D
Il existe 3 classes d'alcools	Vrai	Faux		
Tous les alcools réagissent lors d'une oxydation ménagée	Vrai	Faux		
R—C—H O est la formule générale	d'un alcool	d'un aldéhyde	d'une cétone	d'une amine
CH ₃ —CH—CH ₃ OH est un alcool	primaire	secondaire	tertiaire	quaternaire
CH ₃ —CH ₂ —C—OH O se nomme	propanal	propanone	acide propanoïque	propan-1-ol
Par oxydation ménagée, CH ₃ —CH ₂ -OH peut être oxydé en	CH ₃ —C—CH ₃	CH ₃ —C—OH	CH ₃ —CH ₂ -OH	CH ₃ —C—H O
$CH_3OH = CH_2O + 2 H^+ + 2 e^-$ est une	oxydation	réduction		
CH ₃ —C—H O mis en présence de DNPH	donne une coloration rose-fuschia	donne un précipité rouge brique	donne un précipité jaune	donne une coloration bleue
Le glucose C ₆ H ₁₂ O ₆ réagit à la liqueur de Fehling	par sa fonction alcool primaire	par ses 4 fonctions alcools secondaires	par sa fonction aldéhyde	grâce à ses 6 atomes C
MnO ₄ + 8H ⁺ +5e = Mn ²⁺ +4H ₂ O correspond au couple d'oxydoréduction	H ₂ O / H ⁺	Mn ²⁺ / MnO ₄	H⁺/ H₂O	MnO ₄ -/ Mn ²⁺