Polynésie Juin 2009		
Marquage isotopique et technique d'imagerie médicale (5,5 points)		
Questions	Réponses attendues	
1.1	Temps au bout duquel la moitié des noyaux père d'une source radioactives se sont désintégrés	
1.2	Voir feuille annexe Elle est conforme avec la valeur de 110 minutes données dans l'énoncé.	
2.1	Voir feuille annexe. Par construction graphique, on trouve durée écoulée = 180 jours	
2.2	On peut considérer que la source est inactive au bout de 20 périodes soit $20 \times 110 = 2200$ jours	
3.1	Les constituants du noyau se nomme protons et neutrons.	
3.2	Conservation de Z : $9 = 8 + Z$ d'où $Z = 9 - 8 = 1$ Conservation de A : $18 = 18 + A$ donc A =0	
	La particule est 10 donc c'est un positon	
3.3	Emission d'un positon donc radioactivité β+	
Utilisation de l'eau oxygénée. (7 points)		
	1. Eau oxygénée à la maison	
1.1	Espèce chimique oxydante qui détruit les micro-organismes sur les tissus vivants.	
1.2	La solution est trop concentrée. Il faut la diluer pour amener son titre à au moins 10 volumes.	
2. Eau oxygénée en laboratoire		
	$H_2O = eau$	
2.1	O_2 = dioxygène (attention, pas oxygène. Le dioxygène est une molécule, l'oxygène un élément chimique)	

	On doit diluer 20 fois. Le matériel à utiliser et	
	un bécher pour verser la solution mère à prélever	
	• une pipette jaugée de 5 mL pour prélever la solution mère	
	• une fiole jaugée de 100 mL dans laquelle on fabrique la solution fille	
	(pour les volumes, il fallait analyser l'énoncé)	
2.2	<u>Protocole :</u>	
	 Verser un peu de la solution mère dans un bécher de 50 mL A l'aide d'une pipette de 5 mL munie d'un dispositif d'aspiration, prélever la solution mère Verser ce prélèvement dans une fiole jaugée de 100 mL Compléter avec de l'eau distillée Bouger et agiter. 	
2.3.1	Voir feuille annexe	
2.3.2	$2x(MnO_4^- + 8 H^+ + 5 e^- \longrightarrow Mn^{2+} + 4 H_2O)$ $5x(H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^-)$	
	2 MnO ₄ ⁻⁺ 6 H+ + 5 H ₂ O ₂ → 2 Mn ²⁺ + 5 O ₂	
	D'après l'équation bilan, on peut écrire $\frac{n(H_2O_2)}{5} = \frac{n(MnO_4)}{2}$	
2.3.3	Ou encore $n(H_2O_2) = \frac{5}{2} n(MnO_4^-)$	
	$n(H_2O_2) = C_1V_1$ $n(MnO_4^-) = C_2Veq donc C_1V_1 = \frac{5}{2} n(MnO_4^-)$	
2.3.4	$C_1 = \frac{5 C_2 V_{eq}}{2V_1} = \frac{5x2,0x10^{-2}x8,8}{2x10} = 4,4x10^{-2} \text{ mol } .L^{-1}$	
2.3.5	$C = 20xC_1 = 20x4,4x10^{-2} = 0,88 \text{ mol.L}^{-1}$	
2.3.6	T=11,2xC=11,2x0,88=9,85 volumes. Aux erreurs de manipulations près, on peut considérer que l'eau oxygénée est bien à 10 volumes .	
Sirop pour la toux à la framboise (6,5 points		
Etude du principe actif : la carbocisteine		
1.1	La molécule contient une fonction amine (NH_2) et une fonction acide carboxylique (COOH) portée par le même atome de carbone donc cette molécule appartient bien à la famille des acides α aminés	

1.2	C'est un atome lié à 4 atomes ou groupements d'atomes différents.	
1.3	HOOC—CH ₂ —S—CH ₂ —CH—COOH NH ₂	
1.4	La molécule est chirale car elle contient un atome de carbone asymétrique.	
1.5	COOH H_2N H_2N CH_2 CH_2 CH_2 $COOH$	
Etude des excipients : l'arôme de framboise		
2.1	$\begin{array}{c} H + C + O + CH_2 + CH(CH_3)_2 \\ O \\ \end{array}$ Famille des esters	
2.2.1	H—C—OH	
2.2.2.	Le premier réactif est un acide carboxylique Le second réactif est un alcool	
2.2.3	$H-C-OH_{+}$ $H-C-O-CH_{2}-CH(CH_{3})_{2} = H_{2}O$ $+$ $H-C-O-CH_{2}-CH(CH_{3})_{2}$ O O	

ANNEXE A RENDRE AVEC LA COPIE

Figure 1 : A = f(t)

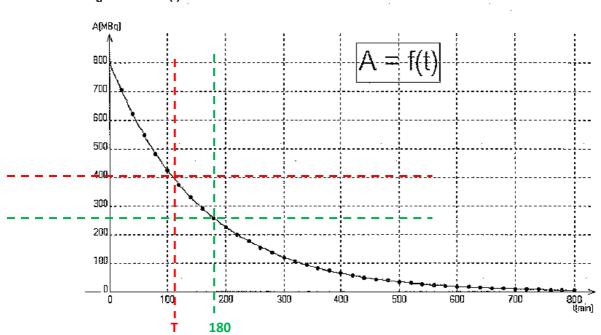
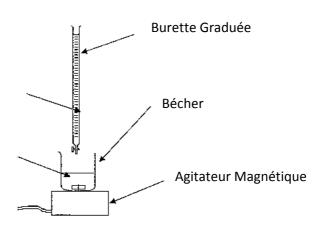



Figure 2 : dispositif de dosage

Solution d'ions permanganate

Eau Oxygénée

9PYMSPO1