EXERCICE I. La méthionine (4 points)

Questions	Réponses attendues
	CH C CH CH CH COOL
1	CH ₃ —S—CH ₂ —CH—COOH NH ₂ Contient une fonction amine et une fonction acide carboxylique portées par le même atome de C
2	CH ₃ —S—CH ₂ —CH ₂ —CH—COOH NH ₂ Carbone lié à 4 groupements différents
3	COOH H_2N ————————————————————————————————————
4.1	CH ₂ —CH ₂ —S—CH ₃ NH ₂ —CH ₂ —CH—COOH
4.2	NH2—CH2—CH2—CH2—S—CH3 N—CH—COOH H Vient de la glycine Vient de la méthionine Donc GLY-MET

Page : 1/4

EXERCICE II : L'ASPIRINE (8 POINTS)

questions	Réponses attendues	
	Etude de l'acide acétylsalicylique (3,75 points)	
1	$n_{ac} = \frac{m_{ac}}{M_{ac}} = \frac{0.5}{180} = 2.8 \times 10^{-3} \text{ mol}$	
2	$C = \frac{n_{ac}}{V} = \frac{2.8 \times 10^{-3}}{1.0 \times 10^{-1}} = 2.8 \times 10^{-2} \text{ mol.L}^{-1}$	
3	$[H_3O^+] = 10^{-pH} = 10^{-2,1} = 7.9 \times 10^{-3} \text{ mol.L}^{-1}$ $[H_3O^+] \neq C \text{ donc l'acide acétylsalicylique est faible}$	
4	Voir feuille annexe	
5	pH du milieu stomacal = 2 donc $pH < pKa$. La forme acide prédomine. Le principe actif est assimilé sous sa forme acide	
6	pH du colon =8 donc pH>pKa. La forme basique prédomine donc, le principe actif est assimilé sous sa forme basique.	
Dosage de l'acide acétylsalicylique dans un comprimé. (4,25 points)		
1	Equivalence : réactifs introduits dans les proportions stœchiométriques de l'équation ou changement de réactif limitant	
2	Méthode des tangentes : $V_E = 14 \text{ mL}$ (feuille annexe)	
3	$n(HO^{-})_{E} = [HO^{-}] \times V_{E} = 2 \times 10^{-1} \times 0,014 = 2,8 \times 10^{-3} \text{ mol}$	
4	$n(AH) = n(HO^{-})_{E} = 2.8 \times 10^{-3} \text{ mol}$	

Page : 2/4

EXERCICE III : Sécurité autour des écoles

Réponses attendues Barème	Commentaires
---------------------------	--------------

Distance due au temps de réaction

1.
$$v = \frac{50}{3.6} = 13.9 \text{ m.s}^{-1}$$

2.
$$v = \frac{d_R}{t}$$
 donc $d_R = v x t = 13.9 x 1.5 = 20.2 m$

3. Fatigue, alcool, stupéfiants, téléphone portable ou autre

Distance de freinage

1.
$$W(\vec{P}) = mgh = 0 car h = 0$$

$$W(\vec{R}) = R \times d_F \times \cos(90) = 0 \text{ car } \cos(90) = 0$$

2.
$$W(\vec{f}) = f x d_F x \cos(180) = -f x d_F$$

3.
$$Ec_A = \frac{1}{2} m v_A^2 = \frac{1}{2} \times 1000 \times 13,9^2 = 96605 J$$

4.
$$Ec_B = \frac{1}{2} m v_B^2 = \frac{1}{2} \times 1000 \times 0^2 = 0$$

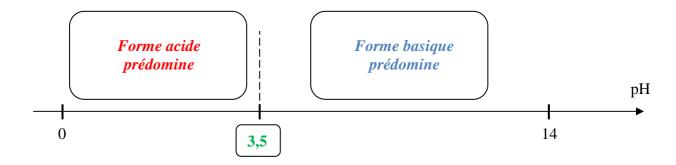
5. Enoncé du théorème de l'NRJ Cinétique

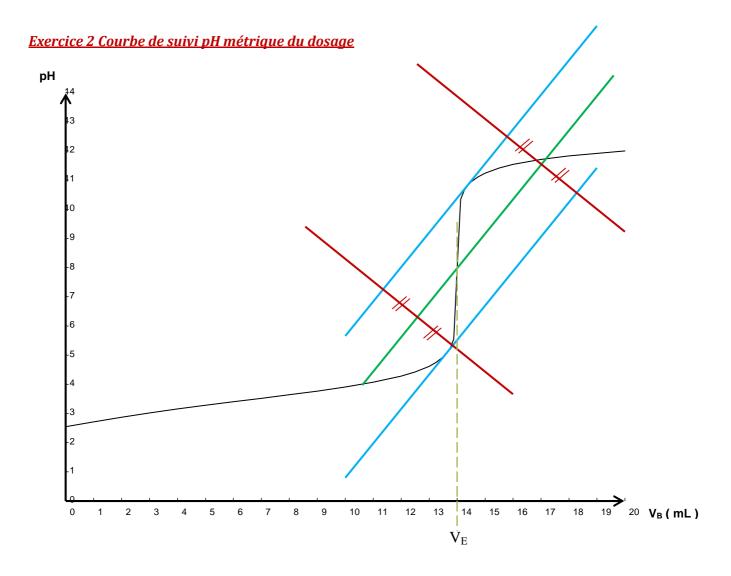
$$\Delta Ec = \Sigma W(F)$$
 soit $\frac{1}{2} mv_B^2 - \frac{1}{2} mv_A^2 = -f x d_F$

II vient alors -
$$\frac{1}{2}$$
 mv_A² = - f x d_F d'où d_F = $\frac{mv_A^2}{2f}$

$$AN = d_F = \frac{1000 \times 13.9^2}{2 \times 8000} = 12.1 \text{ m}$$

5. Etat des freins du véhicule, état des amortisseurs, état de la route ou autre


6.
$$L = d_R + d_F = 20.2 + 12.1 = 32.3 \text{ m}$$


Nom Prénom

Feuille annexe

Classe

Exercice 2. Diagramme de prédominance

