Déterminer la vitesse d'écoulement d'un fluide à partir du débit

Ce qu'il faut savoir

- La vitesse d'écoulement d'un fluide est la vitesse à laquelle il se déplace dans un tuyau.
- Si on considère que le tuyau dans lequel s'écoule le fluide est un cylindre, la section droite notée S du tuyau est donnée par la relation

 $S = \pi r^2$ si r est le rayon du cylindre ou $S = \pi \frac{d^2}{4}$ si d est le diamètre du cylindre.

• Il existe une relation entre le débit volumique et la vitesse d'écoulement

$$D = vxS$$

 Si on veut déterminer la vitesse d'écoulement, il faut modifier la relation précédente de la manière suivante

$$v = \frac{D}{S}$$
 D en m³.s⁻¹
S en m²
v en m.s⁻¹

Remarques:

- Attention aux unités : il faut utiliser les unités légales
- On peut déterminer directement le débit si on connaît la section et la vitesse d'écoulement en appliquant directement la relation D = vxS

Applications

Compléter le tableau suivant (attention aux unités)

r	S	D	V
2,5 cm		2,4x10 ⁻⁴ m ³ .s ⁻¹	
	3400 mm ²		0,57 m.s ⁻¹
150 mm			0,34 m.s ⁻¹
	0,005 m ²	57 L.min ⁻¹	
	25 cm ²		1,2 m.s ⁻¹
10 cm		5,4x10 ⁻⁴ m ³ .s ⁻¹	

Correction

r	S	D	v
2,5 cm	1,96x10 ⁻³ m ²	2,4x10 ⁻⁴ m ³ .s ⁻¹	0,12 m.s ⁻¹
0,032 m	3400 mm ²	1,9x10 ⁻³ m ³ .s ⁻¹	0,57 m.s ⁻¹
150 mm	0,07 m ²	0,024 m ³ .s ⁻¹	0,34 m.s ⁻¹
0,04 m	0,005 m ²	57 L.min ⁻¹	0,19 m.s-1
0,028 m	25 cm ²	3,0x10-3 m ³ .s ⁻¹	1,2 m.s ⁻¹
10 cm	0,031 m ²	5,4x10 ⁻⁴ m ³ .s ⁻¹	0,017 m.s ⁻¹